Las enzimas son catalizadores muy potentes y eficaces, químicamente son proteínas Como catalizadores, los enzimas actúan en pequeña cantidad y se recuperan indefinidamente. No llevan a cabo reacciones que sean energéticamente desfavorables, no modifican el sentido de los equilibrios químicos, sino que aceleran su consecución.
Las enzimas son grandes proteínas que aceleran las reacciones químicas. En su estructura globular, se entrelazan y se pliegan una o más cadenas polipeptídicas, que aportan un pequeño grupo de
2. Acción De Enzimas
La acción enzimática se caracteriza por la formación de un complejo que representa el estado de transición.
El sustrato se une al enzima a través de numerosas interacciones débiles como son: puentes de hidrógeno, electrostáticas,
hidrófobas,
Con su acción, regulan la velocidad de muchas reacciones químicas implicadas en este proceso. El nombre de enzima, que fue propuesto en 1867 por el fisiólogo alemán Wilhelm Kühne (1837-1900), deriva de la frase griega en zyme, que significa 'en fermento'. En la actualidad los tipos de enzimas identificados son más de 2.000.
3.
1. Óxido-reductasas ( Reacciones de oxido-reduccisn).
2. Transferasas (Transferencia de grupos funcionales)
3. Hidrolasas (Reacciones de hidrólisis)
4. Liasas (Adicisn a los dobles enlaces)
5. Isomerasas (Reacciones de isomerizacisn)
6. Ligasas (Formacisn de enlaces, con aporte de ATP)
1.Oxido-reductasas: Son las enzimas relacionadas con las oxidaciones y las reducciones biológicas que intervienen de modo fundamental en los procesos de respiración y fermentación. Las oxidoreductasas son importantes a nivel de algunas cadenas metabólicas, como la escisión enzimática de la glucosa, fabricando también el ATP, verdadero almacén de
En
2.Las Transferasas: Estas enzimas catalizan la
3.Las Hidrolasas: Esta
A este grupo pertenecen proteínas muy conocidas: la pepsina, presente en el jugo gástrico, y la tripsina y la quimiotripsina, segregada por el páncreas. Desempeñan un
4.Las isomerasas: Transforman ciertas sustancias en otras isómeras, es
Las racemasas y las epimerasas actúan en la racemización de los aminoácidos y en la epimerización de los azúcares. Las primeras son en realidad pares de enzimas específicas para los dos isómeros y que producen un solo producto común.
Las isomerasas cis – trans modifican la configuración geométrica a nivel de un doble ligadura. Los óxidos – reductasas intramoleculares catalizan la interconversión de aldosas y cetosas, oxidando un grupo CHOH y reduciendo al mismo tiempo al C = O vecino, como en el caso de la triosa fosfato isomerasa, presente en el proceso de la glucólisis; en otros casos cambian de lugar dobles ligaduras, como en la (tabla) isopentenil fosfato isomerasa, indispensable en el cambio biosinético del escualeno y el
Estas ultimas desarrollan una oxidorreducción dentro de la propia molécula (oxido reductasa intramoleculares)sobre la que actúan, quitando hidrógeno, a algunos grupos y reduciendo otros; actúan ampliamente sobre los aminoácidos, los hidroxácidos, hidratos de carbono y sus derivados.
5.Las Liasas: Estas enzimas escinden (raramente construyen) enlaces entre átomos de carbono, o bien entre carbono y
6.Las Ligasas: Es un grupo de enzimas que permite la unión de dos moléculas, lo cual sucede simultáneamente a la degradación del ATP, que, en rigor, libera la energía necesaria para llevar a cabo la unión de las primeras. Se trata de un grupo de enzimas muy importantes y recién conocidas, pues antes se pensaba que este efecto se llevaba a cabo por la acción conjunta de dos enzimas, una fosfocinasa, para fosforilar a una sustancia A (A + ATP A - ℗ + ADP) y una transferasa que pasaría y uniría esa sustancia A, con otra, B (A -℗ + B A – B +
4. Importancia del ATP (Trifosfato de adenosina)
Es importante ya que es la principal fuente de energía de los seres vivos y se alimenta de casi todas las actividades
Esta molécula se encuentra en todos los seres vivos y constituye la fuente principal de energía utilizable por las células para realizar sus actividades. Se origina por el metabolismo de los alimentos en unos orgánulos especiales de la célula llamados mitocondrias.
Composición Del ATP
El ATP se comporta como una coenzima, ya que su función de intercambio de energía y la función catalítica (trabajo de estimulación) de las enzimas están íntimamente relacionadas.
La parte adenosina de la molécula está constituida por adenina, un compuesto que contiene nitrógeno (también uno de los componentes principales de los genes) y ribosa, un azúcar de cinco carbonos. Cada unidad de los tres fosfatos (trifosfato) que tiene la molécula, está formada por un átomo de fósforo y cuatro de oxígeno y el conjunto está unido a la ribosa a través de uno de estos últimos.
Los dos puentes entre los grupos fosfato son uniones de alta energía, es decir, son relativamente débiles y cuando las enzimas los rompen ceden su energía con facilidad. Con la liberación del grupo fosfato del final se obtiene siete kilocalorías (o calorías en el lenguaje común) de energía disponible para el trabajo y la molécula de ATP se convierte en
La mayoría de las reacciones celulares que consumen energía están potenciadas por la conversión de ATP a ADP, incluso la transmisión de las señales nerviosas, el movimiento de los músculos, la síntesis de proteínas y la división de la célula.
Por lo general, el ADP recupera con rapidez la tercera unidad de fosfato a través de la reacción del citocromo, una proteína que se sintetiza utilizando la energía aportada por los alimentos. En las células del músculo y del cerebro de los vertebrados, el exceso de ATP puede unirse a la
5. Funciones de las enzimas
En su
Una enzima y un sustrato no llegan a adherirse si sus formas no encajan con exactitud. Este
La enzima misma no se ve afectada por la reacción. Cuando los productos se liberan, la enzima vuelve a unirse con un nuevo sustrato.
No hay comentarios:
Publicar un comentario